Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Vaccines (Basel) ; 11(5)2023 May 04.
Article in English | MEDLINE | ID: covidwho-20242835

ABSTRACT

Several observational studies have confirmed that the severe acute respiratory syndrome coronavirus2 (SARS-CoV-2) might substantially affect the gastrointestinal (GI) system by replicating in human small intestine enterocytes. Yet, so far, no study has reported the effects of inactivated SARS-CoV-2 virus vaccines on gut microbiota alterations. In this study, we examined the effects of the BBIBP-CorV vaccine (ChiCTR2000032459, sponsored by the Beijing Institute of Biological Products/Sinopharm), on gut microbiota. Fecal samples were collected from individuals whoreceived two doses of intramuscular injection of BBIBP-CorV and matched unvaccinated controls. DNA extracted from fecal samples was subjected to 16S ribosomal RNA sequencing analysis. The composition and biological functions of the microbiota between vaccinated and unvaccinated individuals were compared. Compared with unvaccinated controls, vaccinated subjects exhibited significantly reduced bacterial diversity, elevated firmicutes/bacteroidetes (F/B) ratios, a tendency towards Faecalibacterium-predominant enterotypes, and altered gut microbial compositions and functional potentials. Specifically, the intestinal microbiota in vaccine recipients was enriched with Faecalibacterium and Mollicutes and with a lower abundance of Prevotella, Enterococcus, Leuconostocaceae, and Weissella. Microbial function prediction by phylogenetic investigation of communities using reconstruction of unobserved states (PICRUSt) analysis further indicated that Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways involved in carbohydrate metabolism and transcription were positively associated with vaccine inoculation, whereas capacities in neurodegenerative diseases, cardiovascular diseases, and cancers were negatively affected by vaccines. Vaccine inoculation was particularly associated with gut microbiota alterations, as was demonstrated by the improved composition and functional capacities of gut microbiota.

2.
Front Biosci (Landmark Ed) ; 28(4): 65, 2023 04 06.
Article in English | MEDLINE | ID: covidwho-2294387

ABSTRACT

BACKGROUND: The SARS-CoV-2 vaccine has been implemented in response to the 2019 Coronavirus Disease (COVID-19) pandemic worldwide. Dysregulation of gut metabolite is associated with COVID-19 patients. However, the effect of vaccination on the gut metabolite remains unknown, and it is critical to investigate the shifts in metabolic profiles following vaccine treatment. METHODS: In the present study, we conducted a case-control study to assess the fecal metabolic profiles between individuals who received two doses of intramuscular injection of an inactivated SARS-CoV-2 vaccine candidate (BBIBP-CorV) (n = 20), and matched unvaccinated controls (n = 20) using untargeted gas chromatography and time-of-flight mass spectrometry (GC-TOF/MS). RESULTS: Significant different metabolic profiles were observed between subjects receiving SARS-CoV-2 virus vaccines and the unvaccinated. Among a total of 243 metabolites from 27 ontology classes identified in the study cohort, 64 metabolic markers and 15 ontology classes were dramatically distinct between vaccinated and unvaccinated individuals. There were 52 enhanced (such as Desaminotyrosine, Phenylalanine) and 12 deficient metabolites (such as Octadecanol, 1-Hexadecanol) in vaccinated individuals. Along with altered metabolic compositions, multiple functional pathways in Small MoleculePathway Database (SMPDB) and Kyoto Encyclopedia of Genes and Genomes (KEGG) varied between groups. Our results indicated that urea cycle; alanine, aspartate, and glutamate metabolism; arginine and proline metabolism; phenylalanine metabolism and tryptophan metabolism were abundant after vaccination. Additionally, correlation analysis showed that intestinal microbiome was related to alteration in metabolite composition and functions. CONCLUSIONS: The present study indicated the alterations in the gut metabolome after COVID-19 vaccination and the findings provide a valuable resource for in-depth exploration of mechanisms between gut metabolite and SARS-CoV-2 virus vaccines.


Subject(s)
COVID-19 , Vaccines , Humans , COVID-19 Vaccines , SARS-CoV-2 , Case-Control Studies , COVID-19/prevention & control , Metabolome
3.
Front Public Health ; 11: 1058029, 2023.
Article in English | MEDLINE | ID: covidwho-2283587

ABSTRACT

Background: Health literacy (HL) is a protective factor for some chronic diseases. However, its role in the Coronavirus Disease 2019 (COVID-19) pandemic has not been clarified. This study aims to explore the association between HL and COVID-19 knowledge among residents in Ningbo. Methods: A total of 6,336 residents aged 15-69 years in Ningbo were selected by multi-stage stratified random sampling method. The "Health Literacy Questionnaire of Chinese Citizens (2020)" was used to evaluate the relationship between COVID-19 knowledge and HL. Chi-square test, Mann-Whitney U test and logistic regression were used to analyze the data. Results: The HL and COVID-19 knowledge levels of Ningbo residents were 24.8% and 15.7%, respectively. After adjusting for confounding factors, people with adequate HL were the more likely to have adequate COVID-19 knowledge compared with those with limited HL (OR = 3.473, 95% CI = 2.974-4.057, P <0.001). Compared with the limited HL group, the adequate HL group had a higher rate of COVID-19 knowledge, a more positive attitude, and a more active behavior. Conclusion: COVID-19 knowledge is significantly associated with HL. Improving HL may influence people's knowledge about COVID-19, thereby changing people's behaviors, and finally combating the pandemic.


Subject(s)
COVID-19 , Health Behavior , Health Knowledge, Attitudes, Practice , Health Literacy , Humans , COVID-19/epidemiology , Cross-Sectional Studies , Health Literacy/standards , Health Literacy/statistics & numerical data , Pandemics , Surveys and Questionnaires , China/epidemiology
4.
Phytochem Rev ; 21(1): 239-289, 2022.
Article in English | MEDLINE | ID: covidwho-2237168

ABSTRACT

Medicinal plants are one of the most important sources of antiviral agents and lead compounds. Lignans are a large class of natural compounds comprising two phenyl propane units. Many of them have demonstrated biological activities, and some of them have even been developed as therapeutic drugs. In this review, 630 lignans, including those obtained from medicinal plants and their chemical derivatives, were systematically reviewed for their antiviral activity and mechanism of action. The compounds discussed herein were published in articles between 1998 and 2020. The articles were identified using both database searches (e.g., Web of Science, Pub Med and Scifinder) using key words such as: antiviral activity, antiviral effects, lignans, HBV, HCV, HIV, HPV, HSV, JEV, SARS-CoV, RSV and influenza A virus, and directed searches of scholarly publisher's websites including ACS, Elsevier, Springer, Thieme, and Wiley. The compounds were classified on their structural characteristics as 1) arylnaphthalene lignans, 2) aryltetralin lignans, 3) dibenzylbutyrolactone lignans, 4) dibenzylbutane lignans, 5) tetrahydrofuranoid and tetrahydrofurofuranoid lignans, 6) benzofuran lignans, 7) neolignans, 8) dibenzocyclooctadiene lignans and homolignans, and 9) norlignans and other lignoids. Details on isolation and antiviral activities of the most active compounds within each class of lignan are discussed in detail, as are studies of synthetic lignans that provide structure-activity relationship information.

5.
Heliyon ; 9(1): e13065, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2179058

ABSTRACT

During COVID-19, the urban environment has faced more challenges, and household waste classification has become increasingly important. Based on the theory of planned behavior (TPB), this paper studies the key influencing factors and influence paths of urban residents' willingness to perform waste classification using a structural equation model. Based on the timing of two questionnaires, one before and one after the COVID-19 outbreak, we apply multigroup analysis to test the moderating role of the pandemic. We find that 1) social norms are the primary factor that directly affects residents' willingness to classify waste, followed by perceived behavior costs and behavior attitude. All factors show a positive effect, except for perceived behavior costs. We also find that 2) the results of multigroup analysis indicate that before and after the epidemic there are significant differences in the effect from three influencing paths, which verifies that during the epidemic, the influence paths of behavior attitude and perceived behavior costs on waste classification willingness have been strengthened, but the influence from social norms is weakened. Finally, we suggest that the government should keep playing an important role in waste classification in terms of promotion, reward and penalty, as well as improvement in laws, rules and waste classification facilities.

6.
Front Biosci (Landmark Ed) ; 27(10): 280, 2022 Oct 08.
Article in English | MEDLINE | ID: covidwho-2111590

ABSTRACT

BACKGROUND: In response to the outbreak of coronavirus disease 2019 (COVID-19) worldwide, inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are implemented. Dysbiosic gut microbiota is implicated in the COVID-19 patients. Whereas, how intestinal microbiota are affected by vaccination remains elusive, and it is important to investigate the microbial shifts during vaccines treatment. METHODS: In the present study, we assessed the gut microbial composition in healthy adults, and performed comparison before and post an inactivated SARS-CoV-2 vaccine candidate, BBIBP-CorV vaccination. RESULTS: Microbial diversity in shannon, pielou evenness, simpson and invsimpson index was remarkably suppressed by vaccination. Ruminococcus and Actinomyces were observed to be strikingly deficient, and Faecalibacterium was dramatically augmented after BBIBP-CorV treatment. Potential functional profiles of gut microbiome in amino acid metabolism, lipid biosynthesis proteins and steroid biosynthesis were remarkably increased, while the capacity in renin-angiotensin system was remarkably decreased following vaccines. CONCLUSIONS: Our study suggests that inactivated BBIBP-CorV against SARS-CoV-2 could elicit modulations on gut microbial composition and functions, which might favor host immune response and protect from COVID-19.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Adult , Humans , SARS-CoV-2 , COVID-19 Vaccines , COVID-19/prevention & control , Vaccination
7.
Indoor + built environment : the journal of the International Society of the Built Environment ; 2022.
Article in English | EuropePMC | ID: covidwho-2033896

ABSTRACT

The COVID-19 pandemic has brought topics of the impact, response and adaptation of cities in emergencies to the forefront. When compared with formal settlements, the problems faced by informal settlements are more prominent. We propose the framework of an actor-network theory, substantiated by an empirical study of three typical informal settlements in Haidian District, Beijing, in which the process, characteristics and internal mechanism of the spatial reconstruction of the informal settlements in response to COVID-19 are closely scrutinised. Human actors such as local governments, community volunteers, landlords, tenants and non-human actors all participated in the response to COVID-19 according to their goal vision and political logic, with the local government as the core driving force, forming an integrated actor network. Rooted in the special locality of informal settlements, the actor network was both hierarchical and flexible, and its inherent dynamism has proven to be efficient during COVID-19, resulting in social adaptation and spatial reconstruction. This study contributes to the cautiously optimistic estimate of similar urban community resilience in terms of global epidemics and enriches the understanding of their interlacing dynamics from the perspective of spatial reconstruction.

8.
J Hazard Mater ; 423(Pt B): 127144, 2022 02 05.
Article in English | MEDLINE | ID: covidwho-1433515

ABSTRACT

During coronavirus disease 2019 pandemic, the exponential increase in clinical waste (CW) generation has caused immense burden to CW treatment facilities. Co-incineration of CW in municipal solid waste incinerator (MSWI) is an emergency treatment method. A material flow model was developed to estimate the change in feedstock characteristics and resulting acid gas emission under different CW co-incineration ratios. The ash contents and lower heating values of the feedstocks, as well as HCl concentrations in flue gas showed an upward trend. Subsequently, 72 incineration residue samples were collected from a MSWI performing co-incineration (CW ratio <10 wt%) in Wuhan city, China, followed by 20 incineration residues samples from waste that were not co-incineration. The results showed that the contents of major elements and non-volatile heavy metals in the air pollution control residues increased during co-incineration but were within the reported ranges, whereas those in the bottom ashes revealed no significant changes. The impact of CW co-incineration at a ratio <10 wt% on the distribution of elements in the incineration residues was not significant. However, increase in alkali metals and HCl in flue gas may cause potential boiler corrosion. These results provide valuable insights into pollution control in MSWI during pandemic.


Subject(s)
COVID-19 , Metals, Heavy , Refuse Disposal , Coal Ash , Humans , Incineration , Pandemics , SARS-CoV-2 , Solid Waste/analysis
9.
Front Psychol ; 12: 636062, 2021.
Article in English | MEDLINE | ID: covidwho-1332135

ABSTRACT

The present research studied Chinese and Euro-Canadian students during the COVID-19 pandemic, focusing on their affect, optimism, well-being, and meaning in life. The results revealed both differences and similarities across cultures. As predicted, Chinese participants reported more positive affect and less negative affect, higher optimism, higher state psychological well-being, and higher meaning presence, compared to Euro-Canadian participants. The findings were replicated after a week's delay. Analyses on longitudinal data showed that state optimism, state well-being, and meaning presence influenced one another over time. These variables also mediated the cultural differences in one another. These results are consistent with cultural work on naïve dialecticism and non-linear lay theory of change. Results also demonstrate underlying relationships among the constructs that are common to both cultural groups. Broadly, the present research highlights the impact of culture on people's response to challenging life situations and the mechanisms underlying these cultural differences.

10.
Int J Cardiol ; 336: 123-129, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-1230514

ABSTRACT

BACKGROUND: Angiotensin converting enzyme 2 (ACE2) has recently been identified as the functional receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent response for novel coronavirus disease 2019 (COVID-19). This study aimed to explore the roles of ACE2, apelin and sodium-glucose cotransporter 2 (SGLT2) in SARS-CoV-2-mediated cardiorenal damage. METHODS AND RESULTS: The published RNA-sequencing datasets of cardiomyocytes infected with SARS-CoV-2 and COVID-19 patients were used. String, UMAP plots and single cell RNA sequencing data were analyzed to show the close relationship and distinct cardiorenal distribution patterns of ACE2, apelin and SGLT2. Intriguingly, there were decreases in ACE2 and apelin expression as well as marked increases in SGLT2 and endothelin-1 levels in SARS-CoV-2-infected cardiomyocytes, animal models with diabetes, acute kidney injury, heart failure and COVID-19 patients. These changes were linked with downregulated levels of interleukin (IL)-10, superoxide dismutase 2 and catalase as well as upregulated expression of profibrotic genes and pro-inflammatory cytokines/chemokines. Genetic ACE2 deletion resulted in upregulation of pro-inflammatory cytokines containing IL-1ß, IL-6, IL-17 and tumor necrosis factor α. More importantly, dapagliflozin strikingly alleviated cardiorenal fibrosis in diabetic db/db mice by suppressing SGLT2 levels and potentiating the apelin-ACE2 signaling. CONCLUSION: Downregulation of apelin and ACE2 and upregulation of SGLT2, endothelin-1 and pro-inflammatory cytokines contribute to SARS-CoV-2-mediated cardiorenal injury, indicating that the apelin-ACE2 signaling and SGLT2 inhibitors are potential therapeutic targets for COVID-19 patients.


Subject(s)
COVID-19 , Angiotensin-Converting Enzyme 2 , Animals , Apelin , Humans , Mice , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2 , Sodium-Glucose Transporter 2
11.
Psychosom Med ; 83(4): 345-350, 2021 05 01.
Article in English | MEDLINE | ID: covidwho-1218025

ABSTRACT

OBJECTIVE: According to recent studies, the COVID-19 pandemic has been associated with an increased risk of mental health problems across many subpopulations including pregnant and postnatal women. This study examined the prevalence and correlates of depressive symptoms (depression hereafter) in Chinese pregnant and postpartum women during the COVID-19 pandemic. METHODS: This was a multicenter, cross-sectional study comprising 1309 pregnant and postpartum women across 12 provinces in China during the COVID-19 pandemic. Depression was assessed using the nine-item Patient Health Questionnaire. Univariate analyses and multivariate logistic regression analyses were conducted. RESULTS: The prevalence of depression in pregnant and postpartum women was 27.43% (95% confidence interval [CI] = 25.01%-29.85%). Women who were worried about themselves or their babies being infected with COVID-19 (odds ratio [OR] = 2.562, 95% CI = 1.670-3.929), and those who had delayed regular medical checkups (OR = 2.434, 95% CI = 1.580-3.750) were at higher risk of depression. Compared with those living in central and western parts of China, women living in northern (OR = 0.513, 95% CI = 0.326-0.807) and southeastern parts of China (OR = 0.626, 95% CI = 0.463-0.846) were less likely to have depression. CONCLUSIONS: The COVID-19 pandemic was associated with an increased likelihood of mental health problems among pregnant and postnatal women. Over a quarter of the pregnant and postpartum women in China had depression during the COVID-19 pandemic. Considering the negative health impact of depression, preventive measures, regular mental health screening, and medical checkups are needed with the goal to reduce the risk of depression in this vulnerable population during a pandemic.


Subject(s)
COVID-19/psychology , Depression, Postpartum/epidemiology , Depression/epidemiology , Pregnancy Complications/psychology , Adult , COVID-19/complications , China/epidemiology , Cross-Sectional Studies , Depression/etiology , Depression, Postpartum/etiology , Female , Humans , Logistic Models , Pandemics/statistics & numerical data , Pregnancy , Pregnancy Complications/epidemiology , Pregnancy Complications/etiology , Prevalence , Surveys and Questionnaires
12.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.10.439161

ABSTRACT

Although vaccines have been successfully developed and approved against SARS-CoV-2, it is still valuable to perform studies on conserved antigenic sites for preventing possible pandemic-risk of other SARS-like coronavirus in the future and prevalent SARS-CoV-2 variants. By antibodies obtained from convalescent COVID-19 individuals, receptor binding domain (RBD) were identified as immunodominant neutralizing domain that efficiently elicits neutralizing antibody response with on-going affinity mature. Moreover, we succeeded to define a quantitative antigenic map of neutralizing sites within SARS-CoV-2 RBD, and found that sites S2, S3 and S4 (new-found site) are conserved sites and determined as subimmunodominant sites, putatively due to their less accessibility than SARS-CoV-2 unique sites. P10-6G3, P07-4D10 and P05-6H7, respectively targeting S2, S3 and S4, are relatively rare antibodies that also potently neutralizes SARS-CoV, and the last mAbs performing neutralization without blocking S protein binding to receptor. Further, we have tried to design some RBDs to improve the immunogenicity of conserved sites. Our studies, focusing on conserved antigenic sites of SARS-CoV-2 and SARS-CoV, provide insights for promoting development of universal SARS-like coronavirus vaccines therefore enhancing our pandemic preparedness.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
13.
JMIR Mhealth Uhealth ; 9(1): e26836, 2021 01 22.
Article in English | MEDLINE | ID: covidwho-1054961

ABSTRACT

BACKGROUND: The COVID-19 epidemic is still spreading globally. Contact tracing is a vital strategy in epidemic emergency management; however, traditional contact tracing faces many limitations in practice. The application of digital technology provides an opportunity for local governments to trace the contacts of individuals with COVID-19 more comprehensively, efficiently, and precisely. OBJECTIVE: Our research aimed to provide new solutions to overcome the limitations of traditional contact tracing by introducing the organizational process, technical process, and main achievements of digital contact tracing in Hainan Province. METHODS: A graph database algorithm, which can efficiently process complex relational networks, was applied in Hainan Province; this algorithm relies on a governmental big data platform to analyze multisource COVID-19 epidemic data and build networks of relationships among high-risk infected individuals, the general population, vehicles, and public places to identify and trace contacts. We summarized the organizational and technical process of digital contact tracing in Hainan Province based on interviews and data analyses. RESULTS: An integrated emergency management command system and a multi-agency coordination mechanism were formed during the emergency management of the COVID-19 epidemic in Hainan Province. The collection, storage, analysis, and application of multisource epidemic data were realized based on the government's big data platform using a centralized model. The graph database algorithm is compatible with this platform and can analyze multisource and heterogeneous big data related to the epidemic. These practices were used to quickly and accurately identify and trace 10,871 contacts among hundreds of thousands of epidemic data records; 378 closest contacts and a number of public places with high risk of infection were identified. A confirmed patient was found after quarantine measures were implemented by all contacts. CONCLUSIONS: During the emergency management of the COVID-19 epidemic, Hainan Province used a graph database algorithm to trace contacts in a centralized model, which can identify infected individuals and high-risk public places more quickly and accurately. This practice can provide support to government agencies to implement precise, agile, and evidence-based emergency management measures and improve the responsiveness of the public health emergency response system. Strengthening data security, improving tracing accuracy, enabling intelligent data collection, and improving data-sharing mechanisms and technologies are directions for optimizing digital contact tracing.


Subject(s)
COVID-19/prevention & control , Contact Tracing/methods , Digital Technology , Epidemics/prevention & control , Algorithms , Big Data , COVID-19/epidemiology , China/epidemiology , Computer Graphics , Data Visualization , Databases, Factual , Humans
14.
BMC Infect Dis ; 21(1): 57, 2021 Jan 12.
Article in English | MEDLINE | ID: covidwho-1024357

ABSTRACT

BACKGROUND: In December 2019, coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, Hubei, China. Moreover, it has become a global pandemic. This is of great value in describing the clinical symptoms of COVID-19 patients in detail and looking for markers which are significant to predict the prognosis of COVID-19 patients. METHODS: In this multicenter, retrospective study, 476 patients with COVID-19 were enrolled from a consecutive series. After screening, a total of 395 patients were included in this study. All-cause death was the primary endpoint. All patients were followed up from admission till discharge or death. RESULTS: The main symptoms observed in the study included fever on admission, cough, fatigue, and shortness of breath. The most common comorbidities were hypertension and diabetes mellitus. Patients with lower CD4+T cell level were older and more often male compared to those with higher CD4+T cell level. Reduced CD8+T cell level was an indicator of the severity of COVID-19. Both decreased CD4+T [HR:13.659; 95%CI: 3.235-57.671] and CD8+T [HR: 10.883; 95%CI: 3.277-36.145] cell levels were associated with in-hospital death in COVID-19 patients, but only the decrease of CD4+T cell level was an independent predictor of in-hospital death in COVID-19 patients. CONCLUSIONS: Reductions in lymphocytes and lymphocyte subsets were common in COVID-19 patients, especially in severe cases of COVID-19. It was the CD8+T cell level, not the CD4+T cell level, that reflected the severity of the patient's disease. Only reduced CD4+T cell level was independently associated with increased in-hospital death in COVID-19 patients. TRIAL REGISTRATION: Prognostic Factors of Patients With COVID-19, NCT04292964 . Registered 03 March 2020. Retrospectively registered.


Subject(s)
CD4-Positive T-Lymphocytes/cytology , COVID-19/blood , SARS-CoV-2/immunology , Adult , Aged , CD8-Positive T-Lymphocytes/cytology , COVID-19/diagnosis , COVID-19/mortality , COVID-19/therapy , Comorbidity , Female , Follow-Up Studies , Hospitalization , Humans , Lymphocyte Count , Male , Middle Aged , Pandemics , Patient Discharge , Prognosis , Retrospective Studies , SARS-CoV-2/genetics
15.
Respir Res ; 21(1): 83, 2020 Apr 15.
Article in English | MEDLINE | ID: covidwho-60448

ABSTRACT

BACKGROUND: The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in China has been declared a public health emergency of international concern. The cardiac injury is a common condition among the hospitalized patients with COVID-19. However, whether N terminal pro B type natriuretic peptide (NT-proBNP) predicted outcome of severe COVID-19 patients was unknown. METHODS: The study initially enrolled 102 patients with severe COVID-19 from a continuous sample. After screening out the ineligible cases, 54 patients were analyzed in this study. The primary outcome was in-hospital death defined as the case fatality rate. Research information and following-up data were obtained from their medical records. RESULTS: The best cut-off value of NT-proBNP for predicting in-hospital death was 88.64 pg/mL with the sensitivity for 100% and the specificity for 66.67%. Patients with high NT-proBNP values (> 88.64 pg/mL) had a significantly increased risk of death during the days of following-up compared with those with low values (≤88.64 pg/mL). After adjustment for potential risk factors, NT-proBNP was independently correlated with in-hospital death. CONCLUSION: NT-proBNP might be an independent risk factor for in-hospital death in patients with severe COVID-19. TRIAL REGISTRATION: ClinicalTrials, NCT04292964. Registered 03 March 2020.


Subject(s)
Coronavirus Infections , Hospital Mortality , Natriuretic Peptide, Brain/analysis , Pandemics , Peptide Fragments/analysis , Pneumonia, Viral , Adult , Aged , Betacoronavirus , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Female , Humans , Male , Middle Aged , Mortality , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Predictive Value of Tests , Prognosis , Reference Values , Retrospective Studies , Risk Factors , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL